2020年湖南成人高考文科数学考点:求解函数解析式
求解函数解析式是高考重点考查内容之一,需引起重视.本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。
●难点磁场
(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).
●案例探究
[例1](1)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式.
(2)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表达式.
命题意图:本题主要考查函数概念中的三要素:定义域、值域和对应法则,以及计算能力和综合运用知识的能力.属★★★★题目.
知识依托:利用函数基础知识,特别是对“f”的理解,用好等价转化,注意定义域.
错解分析:本题对思维能力要求较高,对定义域的考查、等价转化易出错.
技巧与方法:(1)用换元法;(2)用待定系数法.
解:(1)令t=logax(a>1,t>0;0
因此f(t)= (at-a-t)
∴f(x)= (ax-a-x)(a>1,x>0;0
(2)由f(1)=a+b+c,f(-1)=a-b+c,f(0)=c
声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)网站文章免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。
本文地址:http://www.edupeixun.com.cn/shuxuewen/11537.html