2020年湖南成人高考文科数学复习重点:数列的通项与求和
数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n项和Sn可视为数列{Sn}的通项。通项及求和是数列中最基本也是最重要的问题之一,与数列极限及数学归纳法有着密切的联系,是成人高考对数列问题考查中的热点,本点的动态函数观点解决有关问题,为其提供行之有效的方法.
●难点磁场
(★★★★★)设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an与2的等差中项等于Sn与2的等比中项.
(1)写出数列{an}的前3项.
(2)求数列{an}的通项公式(写出推证过程)
(3)令bn= (n∈N*),求 (b1+b2+b3+…+bn-n).
●案例探究
[例1]已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),
(1)求数列{an}和{bn}的通项公式;
(2)设数列{cn}的前n项和为Sn,对一切n∈N*,都有 =an+1成立,求 .
命题意图:本题主要考查等差、等比数列的通项公式及前n项和公式、数列的极限,以及运算能力和综合分析问题的能力.属★★★★★级题目.
知识依托:本题利用函数思想把题设条件转化为方程问题非常明显,而(2)中条件等式的左边可视为某数列前n项和,实质上是该数列前n项和与数列{an}的关系,借助通项与前n项和的关系求解cn是该条件转化的突破口.
错解分析:本题两问环环相扣,(1)问是基础,但解方程求基本量a1、b1、d、q,计算不准易出错;(2)问中对条件的正确认识和转化是关键.
声明:
(一)由于考试政策等各方面情况的不断调整与变化,本网站所提供的考试信息仅供参考,请以权威部门公布的正式信息为准。
(二)网站文章免费转载出于非商业性学习目的,版权归原作者所有。如您对内容、版权等问题存在异议请与本站联系,我们会及时进行处理解决。
本文地址:http://www.edupeixun.com.cn/shuxuewen/11540.html